
Rhythmic Synchronization of Events based on
OSC Data from an External Source

Øyvind Brandtsegg

Norwegian University of Science and Technology
oyvind.brandtsegg@ntnu.no

Abstract. OSC messages is an efficient and versatile manner in which
to communicate between Csound and other software. An inherent draw-
back of using network communications is the potential for timing jitter.
An event displacement of just a few a few milliseconds will in many cases
be perceived as a problem for music performance. To alleviate these po-
tential problems, one can use different methods for time stamping each
OSC message, and the receiving module can use this for rhythmically
precise synchronization when playing the events. The current article ex-
plores a method for such rhythmical synchronization within Csound.

Keywords: OSC, Python, Rhythm, Timing and Synchronization

1 Introduction

Csound is an extremely versatile audio synthesis system, with its large number
of specialized opcodes. Recent developments of the language has also facilitated
its use for complex event generation (for example [1], [2] and [3]). For some
use cases, it can be useful to take advantage of data processing in other pro-
gramming languages. A number of interfaces are available for this purpose, most
significantly the Csound API that allows Csound to be embedded as a module in
many popular programming languages ([4] and e.g. [5]). There are also facilities
for running snippets of other programming languages inline in Csound code, for
example Python (the py opcodes1), Lua, and Faust2. These technologies allow
a close integration with Csound and many times this is desirable. In some other
cases we might need to have a more compartmentalized architecture, with clear
divisions between components in the system. This can allow for system modules
that each are relatively simple, with less dependencies(3) which can alleviate
potential version conflicts when upgrading system components, and cleaner sep-
aration of processing threads. In such a compartmentalized architecture, we can
use a generic method of communication and signaling between modules. For this
purpose, Open Sound Control (OSC) [6] provides a viable protocol. Since OSC
uses generic network connection, it also allows the system to be split over several

1 https://csound.com/docs/manual/pycall.html
2 https://csound.com/docs/manual/faustdsp.html
3 even though the system as a whole still has a large set of dependencies



2 Øyvind Brandtsegg

computers if needed. One inherent drawback of using network communications
is the potential for timing jitter. The amount of jitter depends on the quality
of the network connection and the available bandwidth, but it can typically be
of an order that can disturb rhythmic precision in music performance. An event
displacement of a few milliseconds will be perceived as a problem for music
performance in many cases. With regards to the acceptable bounds on timing
jitter, Friberg and Sundberg [8] reports that a timing displacement of 6 ms is
perceivable in a monotonic isochronous sequence. However, the sequences mea-
sured used inter-onset times (IOT) in the range 100 ms and upwards. Fujii el al.
[9] reports that professional drummers can achieve a mean synchronization error
of 1-2 ms. Even though it is hard to determine any absolute value for acceptable
timing jitter, in our system we can aim for a performance accuracy on par with
that of a professional drummer. For algorithmic computer music, we might envi-
sion creating very fast rhythmical patterns, unplayable by a human performer,
sometimes crossing over from the domain of rhythm to the domain of perceived
pitch. This happens for example in granular synthesis [10]. In audio synthesis,
phase relations between different simultaneous sound sources can have signifi-
cant perceptual effects. This means that an acceptable jitter lies in the range of
the audio sample rate (e.g. 0.02 ms at a sampling rate of 48kHz). Ideally, the
timing precision of a flexible algorithmic rhythm generator should then be accu-
rate to the audio sampling rate in order to allow correct reproduction of musical
ideas transcending the rhythm to pitch time strata. To alleviate timing jitter
problems, one can use different methods for time stamping each OSC message,
and the receiving module can use this for rhythmically precise synchronization
when playing the events. This method has also been described by Dannenberg
[11], trading jitter for latency. The current article explores a method for sample
accurate rhythmical synchronization of OSC generated events within Csound.
The article refers to a set of example scripts with implementations of the meth-
ods discussed. These scripts should be available from the same source where the
article was found and also at a github repository4. Specific scripts are referenced
by file name in the text, like this: myfile.csd and myfile.py

1.1 Use Case

The use case for the system proposed in this article is realtime algorithmic
composition with performer interaction. The system should be able to access data
from an external source without interrupting the audio processing thread(s). If
a chosen algorithm for data generation takes a long time to return, the audio
system must continue processing at the regular pace, gracefully catching up with
skipped events when data is available. This means that single events may be
delayed or skipped, but that the rhythmic pulse(s) of the system does not drift.
In this manner, polyphonic rhythmic processes can proceed without any voice
drifting out of sync with another. One assumes that a composition algorithm
suited for realtime performance will in most cases be able to deliver data for

4 https://github.com/Oeyvind/rhythmic-sync-osc-csound



Rhythmic Synchronization of OSC Events 3

the next event within a relatively short time frame, but also that occasional
processing burst might be necessary. As is common, we use the term delta time
to describe the time from the current to the next event. The system must allow
a delta time of zero, to also be able to stack events for simultaneous performance
(chords and similar).

For the case of example, we will use Python to implement the data generating
algorithm. The example algorithm used in this article will be very simple. For
the purpose of utilizing just this algorithm, it would obviously be better to just
implement it directly in Csound. Algorithm sophistication is not the focus of this
article, but we try to outline a practical manner in which system components
may be interfaced in order to allow more sophisticated and processor intensive
algorithms.

It is preferable to be able to run the system in the context of a regular
Digital Audio Workstation (DAW) environment, as this allows access and inte-
gration with off-the-shelf music software. With the plethora of both paid and
free available sound generators, effects, production tools and utilities, it seems
unreasonable to aim for a system that closes out those possibilities. As we will
want to run Csound within the context of a DAW, we will design the system
so that the Csound part of it can be embedded in a VST (using Rory Walsh’s
Cabbage [12]). Since it is Csound/Cabbage that acts as the main program, we
can not use Csound API to communicate with Python (then Python would need
to be the main program). Further, we will refrain from using the Python op-
codes in Csound, as that would mean we have Python processing happening
inside the audio processing thread. We would like to keep the audio processing
thread as light as possible, also because any interrupts within the audio loop of
a VST plugin will adversely affect the audio processing of the whole DAW host
application. For the sake of simplicity, we will still run Csound as a standalone
application in the context of this article, so we don’t get entangled in the design
of a GUI and other niceties. This also opens up the proposed system design to
other applications and use cases.

2 System design considerations

2.1 Basic system with relaxed timing constraints

The basic system is quite simple: Csound runs a timed process asking Python
for data for the next event, and creates the event when data is received. This
has some problems that we will look into, but as an overview of what we try to
achieve, we can look at figure 1.

In this most basic example implementation (basic osc.csd and basic osc.py)
we use a metro opcode in Csound to trigger the data request over OSC, generate
a note number in Python and send that back to Csound over OSC. A note event is
generated as soon as the message arrives in Csound. This is method will work well
in many cases where timing and synchronization is relaxed. For example control
parameters for an algorithm, automation of instrument parameters like volume,



4 Øyvind Brandtsegg

Csound Python

Request data Generate

Data
Receive data

and make event

Fig. 1. Basic overview of system

effect sends etc. However, the rhythmic precision of the performance suffers from
network timing jitter. In this implementation, we use a steady metro in Csound
to trigger the data request, so the timing will not drift over time even if individual
messages might be delayed. If we want to allow more complex rhythms, we might
want to also request rhythm and tempo data (in the form of event delta time)
from Python. If a tempo change is received late, the resulting rhythm will drift.
For a polyphonic system, we want to ensure synchronization between separate
voices, and make sure that the rhythm data and tempo changes are not affected
by network timing jitter.

2.2 Implementation with rhythmic precision

Rhythmic synchronization can be achieved by collecting events into a queue and
then dispensing them at the appropriate time using a master clock in Csound.
Then we can also add a lag time to the queue dispenser as necessary to receive
all events in due time. This requires a flexible data container to hold the event
queue, a container that can mix different data types and hold events with varying
numbers of parameters. Storing, parsing, and updating the queue could quickly
become a complex task. Interactive performance might also require refreshing
and/or deleting events belonging to a specific voice without affecting other voices,
and we might want to cancel future events according to some constraint. But
wait, we already have that in Csound! The internal scheduling mechanism that
reads score events, and also allows insertion of events in realtime with a specific
event delay. All data types that can be accepted as instrument event parameters
are already taken care of. The timing of the scheduler is sample-accurate and
also allows deletion of future events5. Figure 2 shows an overview of the system,
using a master clock in Csound with event delta times for synchronization. This
represents an overview of the implementation done in precise timing.csd and the
corresponding .py file. The example implementation there shows a polyrhythmic
passage where this tight synchronization is needed. Listing 1 and 2 respectively
shows code excerpts for sending and receiving OSC data.

5 using the turnoff3 opcode



Rhythmic Synchronization of OSC Events 5

Csound

Python

next time time of the next event

time running clock

if time > next time

input parameters

Request event data Generate

Delta time and
event parameters

Receive data
and make event

Add event to
Csound scheduler,

using time and
event parameters

next time
+= delta

Fig. 2. Timing and event generation

Data request

kget_event = (ktime > knext_event_time) ? 1 : 0

if kget_event > 0 then

OSCsend kindex+1, "127.0.0.1",9901, "/csound_send", \

"iifi",ivoice, kindex, itempo, ibasenote

endif

Listing 1: Excerpt from the file precise timing.csd showing the request for event data

Receive data and process event

kmessage OSClisten gihandle, Saddress, \

"ifff", kindex, kdelta_time, knote, kduration

if kmessage == 0 goto done

kevent_time_delay = (knext_event_time-ktime) + ievent_trig_lag_time

event "i", 51, kevent_time_delay, kduration, iamp, knote

knext_event_time += kdelta_time

Listing 2: Excerpt from the file precise timing.csd ; Receive event data and insert event

in Csound scheduler



6 Øyvind Brandtsegg

In our example here, we just read values off a list, but we can conceivably
use a data generating algorithm that takes more time to compute its values.
To facilitate this, we can use a larger static lag time for event synchronization
in Csound. Better still would be to let the algorithm generate lists of values in
larger chunks and then trigger generation of a new batch of values when the
previously generated list of values is almost consumed. One could trigger such
processing when the last, or next-to-last value is dispatched, and then have ample
processing time to generate new values. The generating algorithm would then
still be reasonable up to date with external variables (e.g. what is happening in
other simultaneous voices, or actions taken by the performer).

Even if simple serial reading of values from lists is a somewhat limited data
generation algorithm, it can have some musical applications. A short composi-
tion (serial composition.csd and serial composition.py) has been included in the
example scripts, showing a slightly more musical use of serial data for pitch,
rhythm, stereo panning, attack time and reverb send levels.

2.3 Embedding as a plugin for use with a DAW

The proposed implementation allows embedding in a plugin architecture (i.e.
VST) for use within a DAW environment. An implementation of a VST version
is included in the examples. It shows a GUI controlling 2 separate voices that
can be started and stopped individually with a play button. They will stay in
sync with the timing relationship with which they were started. Each voice has
individual data series for pitch and rhythm, and the data can be updated from a
text box in the GUI. This is intended as a proof of concept, and made relatively
simple for the case of clarity.

3 Running the provided code examples

The code examples for this paper consist of pairs of files with the same file name.
A Csound file with the csd extenstion and a Python file with the py extension
makes up such a pair. To run them, open two terminal windows. First run the
Python file, it act as a server, waiting for data requests from Csound. Then run
the Csound file, which will request data from Python and generate sound. The
Csound process will terminate after the score is done, but the Python process
must be terminated manually. The Python script requires the pythonosc library
[13]. The VST example can be compiled with Cabbage [12]. In this case one
should start the Python server script at any time before hitting ”Play” in the
VST GUI.

4 Conclusion

An example implementation has been shown that allows sample-accurate algo-
rithmic event generation in Csound based on data received via OSC from an



Rhythmic Synchronization of OSC Events 7

external data generator. Python was used as the data processing server, but
other data sources would work similarly. A master clock in Csound was used
for rhythmic synchronization, and the internal Csound scheduler was used to
dispense events with sample-accurate precision. Several pairs of csd/py scripts
may be run simultaneously, provided they each use separate network ports. It is
also possible to allow several csd scripts to interact with one master py script.
This could be useful to allow several VST plugins running this script to interact
with a central realtime composition algorithm, where e.g. voice leading decisions
might rely on currently active notes in other voices running on separate tracks
in the DAW.

References

1. Lazzarini, V. et al. (2016). Csound: A Sound and Music Computing System.
Springer.

2. Yi, S. libsyi - Library of Csound UDO code. https://github.com/kunstmusik/

libsyi

3. McCurdy, I. Realtime Csound Examples. http://iainmccurdy.org/csound.html
4. Csound API documentation https://csound.com/docs/api/index.html

5. Ctcsound API Examples https://github.com/csound/ctcsound/blob/master/

cookbook/08-ctcsoundAPIExamples.ipynb

6. Open Sound Control Home Page https://cnmat.org/OpenSoundControl/

7. Wessel, D. and Wright, M. (2002) Problems and Prospects for Intimate Musical
Control of Computers. Computer Music Journal vol 26-3. https://doi.org/10.

1162/014892602320582945

8. Friberg, A. and Sundberg., J. (1995) Time discrimination in a monotonic,
isochronous sequence. The Journal of the Acoustical Society of America, 98(5):2524-
2531, 1995.

9. S. Fujii, M. Hirashima, K. Kudo, T. Ohtsuki, Y. Nakamura, and S. Oda. (2011)
Synchronization error of drum kit playing with a metronome at different tempi by
professional drummers. Music Perception, 28(5):491-503, 2011.

10. Brandtsegg, Ø. and Saue, S. and Johansen, T. (2011) Particle synthesis–a unified
model for granular synthesis. Proceedings of the 2011 Linux Audio Conference.
http://lac.linuxaudio.org/2011/papers/39.pdf

11. Dannenberg, R. (1989) Real-Time Scheduling and Computer Accompaniment. In M.
V. Mathews and J. R. Pierce, eds. Current Directions in Computer Music Research.
Cambridge, Massachusetts: MIT Press, pp.225–261.

12. Walsh, R. Cabbage - A framework for audio software development. https://

cabbageaudio.com

13. Python OSC - Open Sound Control server and client implementations in pure
Python. https://pypi.org/project/python-osc

https://github.com/kunstmusik/libsyi
https://github.com/kunstmusik/libsyi
http://iainmccurdy.org/csound.html
https://csound.com/docs/api/index.html
 https://github.com/csound/ctcsound/blob/master/cookbook/08-ctcsoundAPIExamples.ipynb
 https://github.com/csound/ctcsound/blob/master/cookbook/08-ctcsoundAPIExamples.ipynb
 https://cnmat.org/OpenSoundControl/
https://doi.org/10.1162/014892602320582945
https://doi.org/10.1162/014892602320582945
http://lac.linuxaudio.org/2011/papers/39.pdf
https://cabbageaudio.com
https://cabbageaudio.com
https://pypi.org/project/python-osc

	Rhythmic Synchronization of Events based on OSC Data from an External Source
	Introduction
	Use Case

	System design considerations
	Basic system with relaxed timing constraints
	Implementation with rhythmic precision
	Embedding as a plugin for use with a DAW

	Running the provided code examples
	Conclusion


